Development of AU-011 for Choroidal Metastasis

Cadmus Rich, Anneli Savinainen, Rhonda Kines

Aura Biosciences, Cambridge, Massachusetts

Disclosures

- Cadmus Rich: Employee at Aura Biosciences
- Anneli Savinainen: Employee at Aura Biosciences
- Rhonda Kines: Employee at Aura Biosciences

Choroidal Metastases (C-Mets)

 Most common intraocular malignancy with global incidence ~ 22,000 patients/year

- Typical presentation Solitary, yellow, plateau shaped lesion with subretinal fluid with less pigment than typical choroidal melanoma
- 72% Unilateral and 72% are solitary lesions
- Mean size: 3mm in thickness and 9mm in largest basal diameter
- 66% diagnosed after primary cancer diagnosis
- Primary cancer breast 47%, lung 21%, Others (GI, kidney, skin, prostate) 14%, not established 17%

High Unmet Medical Need for A Vision Preserving Targeted Therapy

1. Shields, Ophthalmol, 1997, Survey of 520 Eyes with Uveal Metastases.

Novel Technology Platform: Virus-Like Drug Conjugates (VDCs) Analogous to Antibody Drug Conjugates (ADCs)

Technology Platform to Target Solid Tumors with Multiple Options for Cytotoxic Payloads

1. Kines et al; *International Journal of Cancer*, 138;901–911, February 2016; Kines et al; *Molecular Cancer Therapeutics*, 17(2) February 2018 2. HSPGs: Heparan Sulphate Proteoglycans

AU-011 has a Novel Dual Mechanism of Action

AU-011 is designed to cause tumor cell necrosis by:

• Binding multivalently to the tumor cell surface and delivery of hundreds of cytotoxic drug molecules that upon light activation generate singlet oxygen that disrupts the membrane of the tumor cell

And then...

- Damaged tumor cells release neoantigens and DAMPs which communicate to the body's immune system that the cells should be removed
- T- cells are activated generating long-term antitumor immunity in preclinical studies

Disruption of Tumor Cell Membrane Leads to a Pro-Immunogenic, Acute Cellular Necrosis and can lead to T Cell Activation Generating a Long Term Anti-tumor Immunity*

*Accepted for Publication by Cancer Immunology Research

In Vitro Evaluation of AU-011 Tumor Binding and Cytotoxicity

- In vitro binding and cytotoxicity was evaluated by Flow Cytometry
- Specificity was evaluated by adding heparin
 - Binding is inhibited by heparin which validates the requirement for interactions with HSPGs on the tumor cell surface which is conserved across multiple solid tumors

AU-011 has Demonstrated Binding and Potent Cytotoxicity in vitro in Lung Cancer Cell Lines

AU-011 Binds to HSPGs on the Cell Membrane of Lung Cancer Cell Lines and Induces a Potent Cell Killing Upon Light Activation

AU-011 has Demonstrated Binding and Potent Cytotoxicity in vitro in Breast Cancer Cell Lines

AU-011 Binds to HSPGs on the Cell Membrane of Breast Cancer Cell Lines and Induces Potent Cell Killing Upon Light Activation

Single Administration of AU-011 Inhibited Tumor Growth and Prolonged Survival in Breast Cancer Mouse Model

• Similar qualitative results were seen in the 4T1 breast cancer cell line

Tumor cells were implanted subcutaneously. AU-011 treatment was initiated when tumors reached approximately 50 mm³. Treatment consisted of a single intravenous administration of AU-011 (100 ug/mouse) followed 12 hours later by external exposure to near-IR light. Tumor volumes were measured over time.

Conclusion

- AU-011 shows binding and potent cytotoxicity in cell lines derived from the most common cancer types known to metastasize to the choroid: Breast and Lung
 - Potency values in the picomolar range (EC50: 17-250pM).
- AU-011 showed robust anti-tumoral activity in vivo as a single agent using cognate mouse tumor models for breast cancer (EMT-6 and 4T1)

Results Support Further Evaluation of AU-011 as a First in Class Targeted Therapy for the Treatment of Choroidal Metastasis

Contact Information

Cadmus Rich, MD, MBA Chief Medical Officer and Head of R&D Aura Biosciences crich@aurabiosciences.com